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Abstract

This paper describes the verification
approach of large beam type space
structures. The proposed verification
approach consists of two parts. The
first part is to remove the gravity
effect on the tested substructure and
to identify the on-orbit dynamic
characteristics of the substructure by
using the measurements of the ground
test. A scaling law is also
established to define the critical
length of the structure which can be
tested in 1-g field without incurring a
buckling problem. The second part is
to develop an adequate scaling law to
extrapolate the dynamic characteristics
of the prototype structure by using
results from the substructure. The
verification approaches are
demonstrated on two typical structural
confiqurations, the feed support
structure of a wrap-rip antenna and a
candidate Shuttle flight experiment.
The results indicate that it is
practical to verify the on-orbit
dynanic characteristics of these
structures by using the proposed
approach.

Introduction

Structures to be used for future space
application will be very large in size,
such as space station or large -
deployable antenna systems [1). These
space structures may have dimensions on
the order of 30 to 200M. The major
technical problem which must be
overcome before large flexible
structures can be utilized for future
missions is to develop confidence in
predicting their on orbit dynamic
characteristics. Current test methods
are inadequate for such structures
because of their service configurations
and the effect of ground test
environments. Methods must be
developed to accurately predict on-
orbit dynamic characteristics of large
very flexible structures by utilizing
ground test data obtained from either
multiple supports,scale model testing,
or substructure testing. A possible
approach to this problem is addressed
in this paper.

Since many large flexible space
structures can be modeled as beams [2],
the generic structural element chosen
for this investigation is a large space
beam. The results obtained from

o N e L B P

PREI VA

analyzing a large space beam are
applied to large multi-dimensional beanm
type space structures, such as a
typical feed support structure for a
wrap-rib antenna [3]) and the MAST, a
deployable beam shuttle flight
experiment which is being planned by
NASA as part of the Control of Flexible
Structure (COFS) program (4). The
approach of this work is to perform a
series of analytical investigations to
examine the applicability of scale
model ground testing for the
determination of structural dynamic
characteristics and to examine the
applicability of testing a full scale
substructure in a 1-g environment.
These analyses establish dimensionless
parameters for verifying structural
characteristics of large beam type
space structures and establish the
limitations of these test methods for
structural verification.

The verification approach presented in
this paper consists of two parts. The
first part is to investigate the
gravity effect on the dynamic
characteristics of a large space bean.
A closed form solution for the dynanmic
response of a large space beam
subjected to its own weight has been
derived previously [5]. The results
provide a better understanding of
structural characteristics of a large
space beam under gravity. In addition,
the relationships for the natural
frequencies in a 1-g field and a 0-g
field are formulated. This allows the
identification of the on-orbit dynamic
characteristics of large beanm type
structures by utilizing the ground test
data of such structures.

The second part of the verification
approach is to develop scaling laws. A
scaling law for the critical buckling
length of large laced columns is
established. This allows the selection
of an adequate length of the structures
for ground test. Another scaling law
for the bay number of the structure
with replicable bays is also developed.
The results can be applied to
extrapolate the dynamic characteristics
of a large prototype structure by using
the testing data of a substructure. 1In
order to obtain more representative
results, the shear effect is accounted
for in developing this scaling law.
Alternate approaches, such as
suspending the system vertically, is
also discussed in this work. Finally,
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1

the approaches developed in this work
are demonstrated on both a typical feed
support structure of a wrap-rib antenna
and the MAST configuration. Numerical
results from the NASTRAN code as well
as the closed form solution are
presented.

Gravity Effect

The free vibration of a large space
beam with simply supported ends
subjected to its own weight (Figure 1)
has been investigated in Reference 5.
The results established the
relationship of the natural frequencies
in the 1-g field to those in a 0-g

field. They are expressed by
1/2
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forme= 2,4, 6, —_ (1.b)
wvhere w.p is the natural frequency of
the nth node due to gravity effect,
W,y is the natural frequency of the

nth mode in the 0-g environment, N is
the axial stretching force, L is the
bean length, E is the Young's Modulus,
I is the cross sectional moment of
inertial, A is the cross sectional area
and W; is the series coefficient
determined form the static deformation,
W(x), due to its own weight

z: irx
wiCin—L-

4=1,3,5, (2)

Equation (1) indicates that the natural
frequencies of the symmetric modes
(n=1,3,5...) depend on not only the
axial stretching force but also the
static deformation due to its own
weight. However, the natural
frequencies of the asymmetric modes
(n=2,4,6...) are not affected by the
static deformation. It should be
pointed out that the results shown in
Equation (1) are based on the
linearized approach of the governing
equation. The vibration amplitude is
assumed to be relatively small compared
to the static deformation due to its
own weight in a 1-g field. For a large
vibration amplitude, the nonlinear
behavior of free vibration can be
obtained from Reference $5. The present
paper will consider only small
amplitude vibration.

W(x) =

The dynamic characteristics of a
vertically hanging beam (Figure 2)
subjected to gravity effect can be
derived by using the energy method.
The normalized frequency equation can
be expressed by
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] for all m (3)

where M is the mass per unit length.
It should be pointed out that for the
laced columns the mass M in Equation
(3) is the total mass of the structure
divided by the total length of the
structure.

ations ou
The results discussed above allow the
verification of structural
characteristics of large bean type
structures in space by utilizing the
ground test data of such structures.
However, one of the limitations of the
ground test for a very large flexible
structure is the buckling of the
structure due to its own weight. This
xind of buckling problem will restrict
the length of the structure tested in a
1-g environment. In order to define
the critical buckling length of the
structure in 1l-g field, a scaling law
must be established.

Generally, the results of buckling
analyses provide the eigenvalues and
their corresponding buckling modes.
The eigenvalue is the factor by which
the pre-buckling stresses are
multiplied to produce buckling. Since
the loading environment is designated
as 1-g, the relationship between the
structure length and the critical
gravity multiplier (eigenvalue) must be
established in order to define the
critical buckling length of the
structure in the designated 1-g field.

A typical buckling mode of a 20-bay
structure subjected to a field 7.2
times earth gravity is shown in Figure
3. The geometric dimensions and
material properties of this structure
are obtained from Reference 3 and are
also shown in Figure 4. The buckling
mode shown in Fiqure 3 is a local type
buckling mode of the top longerons.
This occurs because the compressive
stresses in the top longerons exceed
the critical buckling stresses.
Numerical results based on NASTRAN
results, shown in Table 1, indicate
that the critical buckling stress of
the longeron (Ncy) is not significantly
affected by the structural length.
Based on the assumption that the
critical buckling stress of the
longerons remains constant, it can be
derived that the critical gravity
multiplier is inversely proportional to

ORIGINAL PAZE (€
OF POOR QUALITY




the square of the bay number if each
bay of the structure is replicable.
This can be expressed by

of)

vhere A is the critical gravity
multiplier of a n-bay structure and nep
is the critical buckling bay number of
the structure in a 1-g field. Table 2
shows the critical gravity multiplier,
based on NASTRAN results, as a function
of the bay number. Applying the
Equation (4), the critical bay number
of this structure can be predicted.
These are also listed in Table 2.
Satisfactory results are observed. 1In
addition, it is noted that the lowest
buckling mode of a 2-D 20-bay structure
is a global lateral buckling (Figure
5). Table 3 indicates that Equation
(4) is valid for this kind of lateral
buckling mode also.

ca \"4

Since the buckling problem limits the
length of the structure tested on the
ground and each bay of the structure is
replicable, a proper approach to
successfully conduct a ground test is
to test the structure with a number of
bays less than the critical number of
bays. Therefore, & scaling law must be
established in order to extrapolate
nature frequencies of the full size
structure by using results from
substructure testing.

It is known that the natural frequency
of a uniform beam is inversely
proportional to the square of the beanm
length. This is based on the
assumption that the shear effect is
negligible. However, Reference 6 ’
indicates that the effect of shear on
the deflection is much greater for a
laced column than for a solid beam.
Hence, this kind of shear effect must
be considered in large beam type space
structures, such as the typical feed
support structure of a large antenna or
the MAST.

It is noted that the effect of the
shearing force reduces the critical
buckling load of a laced cclumn. This
must be considered as the stiffness of
the structure is decreased due to the
action of shearing forces. In order to

account for this effect in the
vibration problem, the stiffness term
in the frequency egquation should be
modified. This modified stiffness can
be approximated from the buckling .,
strength of a laced column. Following
a similar approach as that used in
Reference 7, the modified stiffness
(EIe) of a triangular laced column as
shown in Figure 4 can be expressed by
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EI_ - (5.1)

C
1 +=
n

wvhere EI is the bending stiffness of
the laced column which can be
approximately expressed by EA b2/2, the
c/n? is the correction term due to the
shear effect, the constant c depends
upon the structural geometry and the
vibration modes. For a triangular
laced column, the constant c¢ for the
bending modes can be expressed by

2.2 3 3
C_Zm?rEI(L_+b_)

3‘e3b2 EAd EAb

(5.2a)

vhere £ is the length of the longerons,
d is the length of the diagonals, b is
the length of the battens, EAq and EAp
are the axial stiffnesses of the
diagonals and the battens,
respectively. Equation (5.2a) can be
rewritten as

WzmzA‘e d3 b3
Cs——= \x*x
kY] a %

Substituting the modified stiffness
into the frequency equation of a beam
subjected to lateral vibration, the
scaling law can be expressed as

(5.2b)
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where is the natural frequency of
the full size structure , w is the
natural freguency of the substructure,
n, is the bay number of the full size
structure and ngp is the bay number of
the substructure. It should be noted
that the first part of the righthand
side of Equation (6) accounts for pure
bending and the second part accounts
for the shear effect.

The scaling law of Equation (€) is
verified by using a 2-dimensional feed
support structure. The geometric
dimensions and material properties of

this structure are the same as those
shown in Figure 4. The constant c in
Equation (6) for a 2-D laced column can
be obtained directly from Reference 6.
Both 20-bay and 40-bay laced columns
are used to predict the natural
frequencies of a 60-bay structure.

Note that the structure will exhibit
lateral buckling if the bay number
exceeds 47, as shown in Table 3. The
natural frequencies of these structures
are calculated by using NASTRAN and are
also listed in Table 4. The comparison
betwveen the predicted natural

249



250

frequencies of a 60-bay structure and
those from NASTRAN results are also
shown in Table 4. The results indicate
that the effect of shear plays a
significant role on extrapolating the
natural frequencies of a longer laced
column. It also shows that the scaling
law based on Equation (6) provides
satisfactory results.

Ve atlo

The results discussed above can be
applied to verify the on-orbit dynamic
characteristics of large beam type
space structures. The verification
process can be summarized in the
following steps:

1. Implementation of the buckling
analysis for the structure
subjected to its own weight
provides the critical gravity
multiplier (eigenvalue) and its
corresponding buckling mode.

2. Application of the scaling law for
the critical buckling length, as
shown in Equation (4), determines
the critical buckling bay number of
the structure in a 1-g field.

3. Selection of a structure with bay
number less than the critical bay
number for ground test to provide
substructure testing measurements
in 1-g environment, such as the
static deformation, axial stresses
and natural frequencies.

4. Application of the fregquency
equation, as shown in Equation (1)
or (3), removes the gravity effect
and determines the natural
frequencies of the selected
substructure in a 0-g field.

5. Application of the scaling law for
bay number, as shown in Equation
(6), verifies the on-orbit natural
frequencies of the prototype
structure.

Applications

Two large beanm type space structures
are examined. The first one is a
typical feed support structure of a
wrap-rib antenna, shown in Figure 4.
The results from the buckling analysis
associated with the scaling law
indicate that the structure will buckle
due to its own veight if the bay number
of this structure exceeds 54. In order
to prevent the buckling problem, a 40-
bay structure is proposed for the
ground test. Since no real ground
testing is anticipated in the example
problem, the measurements of this 40-
bay structure are assumed to be those
obtained from NASTRAN results as listed
in Table 5. Following Steps 4 and 5 as
discussed in the verification process,
the on-orbit natural frequencies of a

longer structure (such as 60-bay) can
be determined and these are listed in
Table 6 together with the direct
NASTRAN results for comparison.
agreement is observed.

A good

The second space structure examined in
this work is based on the MAST
configuration which is being considered
by NASA for a future flight experiment
{4). The material properties and
geometric dimensions of the MAST are
listed in Table 7. The full length of
the prototype MAST is approximately 60
meters (54 bays). However, a l0-bay
MAST is proposed for the ground test
because of the buckling limitation of
the structure subjected to the
gravitational environment. The ground
test data of this 10-bay MAST, based on
NASTRAN results, are also shown in
Table 5. Following the verification
process as discussed previously, the
natural frequencies of this 54-bay MAST
can be predicted and the results are
also shown in Table 6. The higher
discrepancy shown in this case is
believed to be due to the smaller
number of bays used in the ground test.
The scaling factor due to shear effect
is more accurate for a laced column
with a large number of panels. For
instance, if a 20-bay MAST could be
tested in the 1-g field, better results
could be achieved.

An alternate approach of verifying on-
orbit dynamic characteristics of this
MAST configuration is to test MAST
substructure suspended vertically. The
restriction of the MAST length, due to
buckling caused by its own weight, is
no longer a major concern in the
vertical suspension test. A 20-bay
MAST is chosen for the vertical
suspension approach. Results, as shown
in Table 8, indicate that the gravity
effect on the natural frequencies of a
20-bay MAST hanging vertically is
insignificant. The predicted natural
frequencies of the prototype MAST,
based on a vertical suspended approach,
are shown in Table 9. Better results
are observed in this case.

Conclus iong

An approach for the verification of a
beam type space structure has been
described. The effect of gravity on
the dynamic characteristics of both
horizontally and vertically supported
beams has been studied and the results
are applied to identify the on-orbit
dynamic characteristics of the
structure tested on the ground. The
natural frequencies of the full size
structure are extrapoclated from those
of the substructure by using scaling
laws. The results indicate that, in
order to accurately predict the natural
frequencies of a laced column, the
shear effect should be considered in

this scaling law. NASTRAN analyses are
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implemented to verify the results based

OF POOR QUALITY

on the proposed verification

approaches.

Satisfactory results are

observed in verifying the on-orbit
natural frequencies of both the typical
feed support structure of a wrap-rib
antenna and the MAST configuration.
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Table 3 Critical Buckling Bay Number of & 2-D
Feed Support Structure
Bay No. 10 20 40
A 21.70 | 8.20 | 1.28
Per Ly 46 46
Table & Comparison of Predicted Natural
Frequencies for a 60-bay Structure
W * -
o|n By | Pl |l
1 20 4.10 0.785 1.051
1 40 1.24 0.950 | 1.007
1 60 0.58
2] 20 10.67 0.577 1.070
2| e 4.00 0.864 1.016
2 60 2.05
3] 2 17.04 0.477 1.065
3| & 7.14 0.800 | 1.018
3| 60 3.97
ub: Predicted natural frequency based on the
assumption that the shear effect 1s negligible.
: Predicted natural frequency based on the
scaling law which includes the shear effect.
[A) Natural frequency of the mth mode for the

60-bay structure (NASTRAN Results),

Table § Measurements Based on NASTRAN Results

The work described in this paper was carried
out by the Jet Propulsion Laboratory,
California Institute of Technology, under
contract with the National Aeronautics and
Space Administration.

Feed Support MAST

Measurements Structure (40-bay)l (10-bay)
Max. Deformation (in.) " 34.64 0.0406
Max, Compressive Stress(PS}) 8054 44
Max. Tensile Stress (PSI) 4043 192
Natural Frequencies fn
1-g field (Hz):

a=] 0.953 17.23

a=2 3.086 4.9

Table 1  Critical Buckling Stress of
Longeron vs. Bay Number
Bay No. 20 40 60 80 100

erlks) | 1.4 | 141 | 200 | 239 | 139

Table 2  Predicted Critical Bay Number of the
Feed Support Structure with Different
Bay Number
Bay %o. 20 40 53 60 80
A 7.20 1.7 0.952 | 0.772 | o0.432
fer 54 53 53 53 5

Table 6 Comparison of Natural Frequency of
Large Beam Type Space Structures

Structure Mode No. up(nz) Wa(Hz)
Feed Support 1 0.418 0.415
Structure
(60-bay) 2 1.554 1.523
Mast b} 0.767 0.735
(54-bay)

2 3.097 2.749

“P: Predicted natura) frequencies from
verification approach.

We : NASTRAN results
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Tatle 7  Geometric Dimensions end Materfal
Properties of the MAST

Oweral) Geometry

Tota) Length (1) 2380.85 tn
Length of fach Bay (f) 48,09 1.
Diameter enclosing the

MAST (D) 55.12 4n.
Bay Number 54

Cross-Section

Longerons:  (3)

Length (f) 44.09 in.
Inside Diameter of all
Longerons 0.55 in.
Outside Diameter of Top
Longerons 0.812 in.
Outside Dismeter of
Bottom Longerons 0.763 4n.
Disgonals: (3)
Length (d) 64.9] in.
Outside Diameter (Solid) ©0.287 in.
Battens: (3)
Length (b) 47.64 4n.
Instde Diameter 0.25 in.
Outside Diameter 0.328 in.
Material
Graphite Epoxy 3
Young's Modulus &[‘ 9.62x10" pst
Poisson's Ratfo (V 0.3
Mass
Joints 0.787 b
Specific Weight Density 3
Longeron 0.07814 1b/4n
Diagonal 0.1604 1b/in3
Batten 0.05954 1b/4n3

Table 8 Comparison of Natural Frequencies of a 20-bay
MAST Structure Hanging Vertically

1 <
Mode No. Gh(Hz) wp ) | wi (H2)
1 4.883 4.888 4.887
2 16.524 16.531 16.528

Wyt Ketural frequencies in O-g field (NASTRAN)
2 : Natural frequencies in 1-g field (NASTRAN)
ug: Katursl frequencies in 1-g field (Equ. (3))

Table 9 Comparison of Katural Frequencies
of the Prototype MAST

Mode No. WplHz2) Welkz)| Gp/we
1 0.7119 0.715 2.005
2 2.841 2.749 1.033

Up : Predicted natural frequencies from
verification approach

We : NASTRAN results
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Figure 1 Simply-Supported Beam

VIBRATION MODE

Figure 2 Vertically Hanging System

(a) No Buckling
2

!

!

(b) Buckled

Figure 3 Buckling Mode of a 20-bay
Feed Support Structure (Top
View)
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Figure & Geometric Dimensfons and Matertsl
Properties of the Feed Support
Structure
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Side View (45° w.r.t. y-axis and z-axis)

Figure 5 Lateral Buckling nod;e of a

2-D Feed Support Structure
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